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A new approach to one-centre approximation methods initiated by Mulliken 
and Ruedenberg in their earlier works has been developed in this paper. 
Despite the similarity of underlying ideas, the proposal to factorize the 
s-function product instead of the total density factorization along with a new 
technical background of the method provide more flexible and practical 
scheme since large orbital quantum numbers do present no longer the crucial 
point for extending the approach for compounds with heavy atoms. Both 
minimal and extended schemes are equally within the scope of the method. 
The technical links with the nuclear shell model formalism are discussed 
briefly. 
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1. Introduction 

Many approximate and semiempirical MO L CA O  SCF methods are based on 
one-centre approximation of two-centre atomic and molecular density distribu- 
tions. For  the atomic distribution r (rla)~0 (rib), the general form of this approxi- 
mation is: 

(rla)~b(rlb) ~-~ Cii~(rla) + ~, Djxj(rlb) (1) 
i ] 

Since molecular density p (r) is a linear combination of atomic distributions, its 
expansion has the similar structure 

P (rl) = Y~ Ca, i~(rla), (2) 
a,i 
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where rla = r l - R a  ; r l  and R~ are the electron and nuclear coordinates, respec- 
tively. 

A specific feature of Eqs. (1) and (2) is "additive factorization" of their right-hand 
sides with respect to r~ ,  r l b  . . . .  whereas the left-hand sides are characterized 
by "multiplicative factorization" with respect to these variables. In other words, 
the L C A O  form is suggested not only for molecular orbitals, but also for their 
bilinear products (figuratively, we deal with "double"  L C A O  approximation in 
this approach). It  is indeed a strong and far-reaching assumption. The most 
important  merit  of this approximation is the additive decomposit ion of multi- 
centre two-electron integrals into Coulomb two-centre integrals. This remarkable  
simplification has been exploited in various approaches based on one-centre 
approximation: f rom "naive"  semiquantitative approaches involving the least 
possible number  of terms (usually two) in Eq. (1) (we call them minimal 
approximations) [1-5] up to more sophisticated methods involving sufficiently 
large number  of terms to imitate ab initio calculations with satisfactory, for many 
purposes, accuracy. These latters will be referred to as extended approximations 
[6-9]. 

In some remote  sense, it is possible to consider a limiting extension of the basis 
in the right-hand side of Eq. (1) which results in a complete set of functions 
(Ruedenberg 's  approximations [10]). This implies a transition f rom approxima- 
tion by finite sums to an exact infinite expansion equivalent to some ab initio 
calculation scheme. One should bear  in mind that such an interpretation is of 
purely speculative nature since the construction of effective two-centre basis 1 
has so far not been considered, let alone the convergence of the corresponding 
expansions. In the following we always imply by "expansion"  approximation of 
the densities by the finite number  of factorized terms. This procedure will be 
referred to as a "factorization method" .  

Certain specific difficulties [5, 11-15] are encountered both in the minimal as 
well as in the extended schemes. Unsatisfactory approximation of atomic densities 
containing basis functions with non-zero orbital moments  l is the main demeri t  
of the minimal factorization methods. On the other hand, the extended factoriz- 
ation methods involve rather  cumbersome expansions. As a result, the determin- 
ing of the coefficients in Eq. (1) with the help of the least square method 
(LSM) becomes more  and more  tedious as the number  of terms in the expansion 
increases [7-9]. 

There  is a simple recipe to avoid these and other difficulties. Indeed, let us apply 
the expansion (1), not to the total atomic density, but to the product  of s-functions 
which always enter implicitely into the total density notwithstanding whatever  
large l might be involved in it. By analogy with the traditional spectroscopic E, 

1 It is supposed in the Ref. [10] that some complete orthonormalized sets of functions are centred 
on each of the nuclei a and b. Combining these sets together provides an overcomplete set. 
"Expansion" of a function over such a set is not unique. The criteria of closeness (Parceval's formula) 
and of completeness (Riesz-Fischer theorem) also seem to fail for such a set. 



One-Centre Approximation of Atomic and Molecular Densities 445 

H, A-classification, evidently, the distribution described by the two-centre prod- 
uct of s-functions will possess Y-symmetry in the rotated coordinate system Krot 
with the polar axis directed along Rba. The corresponding procedure is therefore 
called E-factorization. The idea underlying the method, which is exposed in 
[16], has been motivated by the observation that though E-factorization does 
not result in complete additive decomposition of atomic densities, the remaining 
non-additive contributions turn to be homogeneous polynomials of the Cartesian 
coordinates of electron and nuclear radius-vectors. Fortunately, two-centre prod- 
ucts of these polynomials can be reduced to the desired one-centre form with 
the help of the exact  addition theorems without taking recourse to the LSM 
procedure. To have an illustrative example, suppose 

q~(rla) = Zla exp (-ar~a),  $(rlb) = zlb exp ( - f l r lb)  (3) 

in Eq. (1). Applying the additive decomposition procedure to the product of 
s-functions, we get 

exp (-c~rl~) exp (-/3rib) ~ f ( r l a )  +x(rab),  (4) 

where f and ~ denote one-centre expressions analogous to those in the right-hand 
side of Eq. (1). Though the total density 

q~(rl~)O(rlb ) ~- z l~z  lbf(rla)  + Z laZlbX(rlb ) (5) 

takes but a partially factorized form, the interfering two-centre contribution 
zl~z~b can be easily transformed 2 to the necessary one-centre form, applying 

2 2 ZlaZlb = Zl~ +ZabZla and z laz lb  = Zlb --Zabztb in the first and in the second term 
on the right-hand side of Eq. (5), respectively. Evidently, this leads to the desired 
one-centre form for the total density. 

In comparison with this simple example, the general case do present, however, 
much more severe technical difficulties. Therefore,  dispite the simplicity of 
underlying idea, the approach would be ineffective without the use of funda- 
mental theorems of the angular momentum theory. Only a systematic use of 
these theorems provides a universal algorithm, allows the application of standard 
kinematical constants and permits compact consideration of basis functions with 
arbitrarily large orbital momenta.  

2. Reduced Atomic  Densit ies  

We shall write the Slater function ~b (r) as a product of the nonnormalized radial 
part e(r) and the spherical function Y ( r )  with the Condon-Short ley phase 
[17a, 18a, 19a]: 

O~.n.l,m (r) = e~,. (r) Yl, m (r), (6) 

e~,n (r) = r n exp ( - a r ) - -  4.]-4~0 .... o,o (r), (7) 

2 The possibility of such transformation, in this simplest form, has been indicated in private 
communication, independently but posterior to author's observation, by V. G. Vochmin (A. W.N.) 
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where  r in Y ( r )  denotes  the set of angular  coordina tes  0, q~ of the vec tor  r. T h e  
second par t  of Eq.  (7) follows f rom the re la t ionship  Yo,o(r) = 1 / x / ~ .  W e  take,  
as usually, tha t  the funct ion (6) descr ibes  some  In + 1 , / ) - s t a t e  (or s, p, d . . . .  - 
states,  if l = 0, 1, 2 . . . .  ) and the  funct ion (7) descr ibes  the  In + 1, 0>-state (or 
s -s ta te ,  since l = 0). 

For  brevi ty,  let 

[i] = [a/, nl, li, m i ] - -  [(i), m~], (i)--(a~, ni, l~) (8) 

then  we can write the  Slater funct ion cen te red  at the  poin t  Ra  as 

0[a] (rl) = ~b[i](rla) = O(i)mi(rla), rla = r l - R a .  (9) 

Consequent ly ,  the  two-cen t re  a tomic  densi ty  can be  wri t ten using any of the 
fol lowing notat ions:  

a,b a II[i,j?(rl) = II(~.j) . . . .  ,(rl , ,  rlb) = Ori~ (rl)O~jl (rl). (10) 

F r o m  the v iewpoin t  of t r ans fo rmat ion  proper t ies ,  the  a tomic  densi ty I I  differs 
f rom the basis funct ion 0 in that ,  under  rota t ion,  the f o r m e r  do not  satisfy the  
same  simple t r ans fo rmat ion  law as the latter.  Indeed ,  let ~ (a , /3 ,  y)  be  some  
Eu le r  ro ta t ion  ( through a abou t  the z-axis ,  t h rough /3  abou t  a new posi t ion of 
the y-axis ,  and th rough  Y abou t  a new z-axis)  which conver ts  the  coord ina te  
sys tem of basis unit  vectors  K into a new sys tem K r o t ~ K  ' (Fig. 1 shows a 
par t icular  ro ta t ion  a = q~R,/~ = OR, y = 0). Le t  a vec tor  r in K be  t r ans fo rmed  
into r '  in K '  (0', q~' in t e rms  of po la r  coordinates ,  see Fig. 1). Symbolical ly,  the  
result ing coord ina te  t r ans fo rma t ion  can be  expressed  as r ' =  f~r. T h e  funct ion 
Y, and consequent ly  0, are t r ans fo rmed  by  i r reducible  r ep resen ta t ion  of the 
ro ta t ion  group.  In o ther  words:  

l i 

' = D;~ ,m,(['~)~J(i)m;(rla), (11) tO(1)m, (rl~) = O(i)m~(~rl~) E 
mi~-- l i  

K = - K r o  t , Z 

Fig. 1. Coordinate system K and K'  ---Krot (for expla- 
nation see Sect. 2 and 4) 
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where D(f l )  is the Wigner matrix [17b, 18b, 19b]. Any quantity satisfying Eq. 
(11) is called an irreducible spherical tensor (IST). The atomic density H is expressed 
as a direct tensor product (DTP) of two IST, and is not therefore a component  
of some IST but satisfies a transformation law more complicated than Eq. (11). 

To simplify the transformation properties of atomic density relative to rotations 3 
we shall use, in place of the direct product (10), an irreducible tensor product 
(ITP) [17c, 18c, 19c]: 

a,b 
7r ( i , j ) l , m ( r l )  = "Ir(i,j)t, r n ( r l a ,  r i b )  = {~( i ) ( r la )  (~) O(j)(rlb )}t,m 

(12) 
= 2 (limiljmi[lm)O(i)mi(rla)O(i)mi(rlb), 

mi, m i 
( m i + m i = m )  

where (aabfl [c7) are the Clebsch-Gordan coefficients [17d, 18d, 19d]. Note that 
the ITP (12) satisfies the triangle condition [li- li[ <-l <-l~ + li, where the quantity 
l~ + l j -  l may assume any integer value. We call the quantity ~r reduced (or 
irreducible) atomic density. Since the transformation Eq. (12) is unitary [17e, 18e] 
the initial atomic density can be expressed through reduced densities as follows: 

li+l i 

II(i,j) . . . .  j(rla, rlb) = E (limiljmjllm){tO(i)(rla) @ O(j)(tlb)}t,m (13) 
/-II~-zil 

(m- -ra i+mi)  

Reduced atomic densities in Eq. (12) satisfy the same simple transformation 
law. Eq. (11) as the basis functions. 

3. Preliminary Multiplicative Factorization 

The usual extended factorization scheme is based on the expansion 

a,b b,b 
a,a Cb[i,j,q,r] (R )H[q.rl(r l) (14) IIE,.il(rl) = E Ca[i,j,q,rl (N)iia, , l(rl)  + E 

[q,rl [q,r] 

where the one-centre densities IIa'" and II b'b are constructed, as a rule, from the 
functions present in the basis (additional functions can, in principle, be intro- 
duced) and the coefficients C are found by the LSM [7-9], imposing some 
additional conditions [9, 5], if necessary, to improve the approximation. 

The analytical properties (transformation properties, in particular) of the basis 
functions are not altogether taken into account in the Eq. (14). If the basis set 
contains functions of complicate geometry (large l-values), the number of terms 
necessary for a satisfactory accuracy may be quite great. Even for small orbital 
numbers, inversion of matrices of large dimensions in the usual LSM [9] is rather 
tedious, and certain complications arise due to nearly degenerate matrices. 

Use of a large basis in Eq. (14) is essential largely to represent the geometric 
relief of If-distribution due to the angular factors Y. Since the structure of 

3 This leads, simultaneously, to significant simplification of translational properties of the polynomial 
parts of the densities to be introduced in the Sec. 5. 
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angular parts does not change from one compound to another or when the Slater 
parameters are varied, it is desirable to separate and treat them in an explicit 
form with some exact procedure, while using the LSM only for approximating 
the contribution due to the exponential factors. It is convenient to separate the 
angular parts together with the power multipliers: thus we easily obtain poly- 
nomial structures, and the analytical transformations are considerably simplified. 
Now consider the function 

~/~m(r)= l+2k . . . .  2k~.0 , ,  r rl, m ~ r ) = r  Wl, r~r)  (15) 

implicitly contained in the Eq. (6). If k is a non-negative integer (the case 
considered henceforth), the IST (15) is a uniform tensor polynomial of the 
Cartesian coordinates x, y, z of the vector r. If k = 0 then the expression (15) 
satisfies the Laplace equation, i.e. is a uniform harmonic polynomial. Now write 
Eq. (6) as 

tO~,,,t,m(r)=e~,~(r)~ u = n  - l - 2 k  (16) 

Separation of the s-function e in Eq. (16) is not unique. Let  n = 2 J ( n ) + f ( n ) ,  
where J ( n )  is the integral part of n / 2 .  For the function e to represent some 
[u + 1, s)-state (we also admit 10, s)-states described by the Helmholtz function), 
besides k >-0, it is also necessary that u = n - l -  2k ->-1.  Then, we obtain 

O<-k < - J ( n - I  + l ) .  (17) 

In particular, if k = O, then 

tp .. . .  z,m(r) = e~,.-l(r)~ (18) 

The other two particular cases 
: \ t a , J ( n - - l )  t# . . . .  l,m (r) = e~,j(.-l)tr)~al, m (r), (19) 

J ( n - l + l )  4' . . . .  t,m (r) = e~,-j(,-l)(r)O-ffl, m ( r )  (20) 

correspond to minimum possible principal quantum numbers of the s-state e. 
For  even n -  l, both the functions e~,j(,-z)= e~ , - i ( , - t )=  e~,o are re la ted  to I1, s) 
type. For odd n - l ,  the functions e~,j(,-z) = e~,l and e~,-i(,-t) = e~,-1 are related 
to 12, s) and ]0, s) types, respectively. The quantity k can be chosen arbitrarily 
in constructing different approximate calculation schemes. 

For brevity, denoting 

l - ' i ( i )  - ~  l ' l i ( i )  - -  l i ( i ) -  2ki(i), (21) 

( i ) - - ( a l ,  ui), ( i , ] ) - - ( a i ,  ui, ai, uj), (22) 

we write the reduced atomic density as 

7r(i,i)t,,.(rl~, rib) = cr<i,i> (rl~, rlb ){~ | ~'(rlb)}l,m, (23) 

O'<i,j> (rl~, rib) = e~,~, (rl~)e~j,.~ (rlb ). (24) 

In accordance with the foregoing remark, we apply additive decomposition Eq. 
(14), not to the total density (23), but to the function or, i.e. to the product of 
s- states e. 
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4. ~-Faetorization in terms of Basis Functions of Correct Symmetry 

Since the function tr in any system K '  with a polar axis along Rba is s  symmetric, 
it is desirable to use E-symmetric functions in auxiliary expansion, too. A simple 
Euler rotation under which the z- axis assumes the direction Rba is I1 = (r OR, 0) 
(see Fig. 1). Let D ( R )  denote the matrix corresponding to this rotation, and s 
denote the same static relief in the system K '  as the function or in the system 
K, i.e. E(r') = or(r). To approximate the axisymmetric distribution E in the system 
K' ,  we should use functions with zero momentum projections onto the z'-axis. 
Thus, the E-factorization approximation should have the form: 

a I t 
s = E C,,r Cb'<q)(R)gZ(q)ob' (rx'). (25) 

(q) (q) 

By virtue of Eq. (11), we obtain 
lq 

g%)o(r~)= Y. D tq.,q,o(R)~(q)mo(ra). (26) 
rrtq -- --lq 

A particular form of D-function in Eq. (26) with zero momentum projection 
can be expressed in spherical functions [17f, 18a] 

D l"m..o (R)~D~.o(~R,  OR, 42l~+ 1 YI....(R)., (27) 

From the definition of the scalar product of two IST of the same rank [17g, 19el 

( f ,  " (~l) = E flm(~lrn (28) 

after substituting Eq. (27) into Eq. (26), we obtain 4 

I//(q)~ = ~ 2 / q @ 1  (ylq ( R ) "  i//(q)(rl) ). (29) 

Hence, from the relation between tensor scalar product and irreducible product 
[17h, 19f] 

( Y~(a) . Y~(b )) = (-l)t~/21 +l{Yt(a)  | Yl(b )}o,o (30) 

we obtain 

tP(q)o(r~) = (-1)l"44--~{Yt.(R) | tP(q)(r,)}o,o. (31) 

Formula (31) gives an expression for the basis functions of proper symmetry. 
By virtue of the relation between E and o-, after including the constants into Ca, 
Cb, we obtain the s equation in the form: 

"<"J> ~" ){ Yt. (R ) | r O'(i,j)(rla, rib) = 3~ t~(q)t*" 
(q) 

q_ ~ ,.~(i,i) W b(q) (R ){ Yl, (R) | g*(q)(rlb )}o.o. (32) 
(q) 

4 Analogous  s ta tement  for usual  vectors is trivial, because ( R .  r,)  is invariant under  rotations 
about an axis parallel to R. 
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The coefficients C, just like in the conventional scheme Eq. (14), can be found, 
using some variational method. Let  us note the difference between the expansion 
Eq. (32) and conventional scheme Eq. (14). First, Eq. (32) is linear in ~s, while 
Eq. (14) is bilinear. The inclusion of the double products of atomic orbitals in 
the Eq. (14) is a forced measure needed to enrich the set of functions of complicate 
relief geometry. Otherwise, it is impossible to describe reasonably even the 
qualitative behaviour of atomic density s. Possibility to limit the expansion only 
to terms linear in ~s (pure LCAO form) is the obvious advantage. Second, an 
auxiliary basis of smaller length, than that in Eq. (14), can be used, because the 
product of s-functions which is the only function approximated has the simplest 
geometric structure amongst the atomic densities. Third, the coefficients C in 
Eq. (32) depend only on the scalar parameter  R but not on the vector argument 
R as in Eq. (14). This is an advantage in calculations involving variation of bond 
angles. The possibility of the a priori construction of auxiliary functions of correct 
symmetry, and no need for the use of "polarization" functions should also be 
numbered amongst the merits of the approach. 

Substituting Eq. (32) into Eq. (23), and by virtue of the simple property of tensor 
products [17i, 18f] 

foo~,., = {/Co | ~t},,m (33) 

we obtain 

b 
rg(i,i)l.m(rla, r , b ) =  E E ~</,i> i.j C c(q) ( R  )p c(q)l,m (r  la, r lb) ,  (34) 

c=a (q) 

i,i Pc(q)l,m(rla, rlb) = {{ g~ (R) @ 4~(q~(rlc)}o | {~ @ ~ (35) 

Equation (34) for the time being gives a partially decomposed expression for 
the reduced density. Note that the expression in Eq. (35) depends on four IST 
exclusively through ITP, i.e. is of purely tensor nature. 

5. Addition Theorem for the Polynomials 

To secure final factorization of the expression (34), a tensor form of the Taylor 
series should be used for the function ~ / ( r~c -R)  in the Eq. (35). Though the 
result can also be obtained as a particular case of a general expansion [20] valid 
for any k, we give an independent proof of the theorem for integral k. This case 
is worth special treatment because the functions ~ have certain properties which 
are not revealed in the framework of the general formalism. Herewith, there is 
no need to take recourse to generalized functions [20]. On the other  hand, our 
approach gives a simple generating function for the typical structures involved 
in the E-factorization method and permits us to introduce certain important 
concepts and relationships. 

5 In the case of diatomics with minimal (s, p) basis for each atom, the product ptro • p% is orthogonal 
to all the basis functions. The product Pa • Pa = so + da (Clebsch-Gordon series) contains a term d., 
on which the projection of ptr,~ • prrb is non-zero, 
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A fundamental property of the polynomials ~ is that the plane wave is a bilinear 
generating function for these polynomials. Expanding a plane wave (modified 
case) as [17j, 21] 

7"r 1/2 
exp[2ab]= ~ (~ - )  (l+�89 (36) 

/ = 0  

where Iv is the modified Bessel function and Pt is the Legendre polynomial, and 
representing It§ as a power series, expressing P~ in a tensor form 

Pt[cos (a, b)] = (-1)t4~-(2/+ 1)-l/a{yl(a) | Yt(b)}o.o, (37) 

which is equivalent to the addition theorem for spherical functions [17k, 18g] 
and putting the scalar factors inside the tensor product, we obtain: 

exp [2ab] = ~ ~ a(k,/){~k(a) | ~(b)}0,0, (38) 
k = 0  l--O 

a (k, l) -- ( -  1)~27r 3/2(2/+ 1)1/2/[k !F(k + l + 3/2)] (39) 

which proves our assertion. 

An addition theorem for the polynomials ~ follows directly from the obvious 
addition theorem for the generating function Eq. (38) 

exp [2a (b - c ) ]  = exp [2ab ] exp [-2ac ]. (40) 

Indeed, using Eq. (38) for all the three exponents in (40), by virtue of Eq. (33), 
we obtain 

Y~ a(k, I ) { ~ ( a )  | ~ ( b  -c)}0,o (41) 
k,l 

= Y~ a(kl, la)a(k2, 12){{~?(a)|174174 
klllk212 

Reassociating the factors in the irreducible product of four commuting IST 
(definition of 9f-symbols [171, 18h, 19g]), we obtain 

{{Pa | Ob}c | {Rd | Se}r}k,m = Z ~'cSt~ d e 
l,A 

l h 

x {{P~ | Rd}~ | {Oh | S~}~}k,~, (42) 

where zr~... = [(2c + 1)(2f+ 1)...]1/2. A specific type of Fano's coefficients result- 
ing from the reassociation of the Eq. (41) leads to the selection rule h = l, whence 
[18i, 19h] 

12 = ~ll~t~. (43) 
! 

Using the standard addition theorem for spherical functions Y [17m, 18j], we 
can express the tensor product of the polynomials ~ of the same argument as 
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follows: 

= l ~  kl+k2+(t~+t~-l)/2 ta ~ (44) { ~ ( a ) |  H ( l l ,  12, , ,,m , ,, 

H (a, b, c) = (47r )-l/2r (aObO]cO) / rrc. (45) 

By virtue of the selection rule for the Clebsch-Gordon coefficients with zero 
momentum projections the quantity 11 + 12 - l in the Eq. (44) should assume only 
even integer values. 

Introducing the new variable k = kl  + k2 + (ll + lz - 1)/2, we find that the right- 
hand side of Eq. (41) can be written in the same form as the left hand side with 
the exception that, in place of ~ ( b - c ) ,  there appears some expression with 
contributions factorized with respect to b and c. Since the functions ~ k t,, are 
linearly independent,  the corresponding expressions can be equated to each 
other. Thus, we obtain the addition theorem for the polynomials ~ (Taylor 
series in a tensor form): 

~ ( b  - c ) =  E 3'((lk, I lkl ,  l z k 2 ) { ~ ( b ) |  ~ (c)}t,,~, (46) 
[llkl I2k211k] 

Y((lk, l tk l ,  12k2) = (-1)  l~ a(k l ,  I1)a(k2, 12) ~'l H ( l l ,  12, l). (47) 
a(k,  l) rrh Trt2 

The symbol [lakfl2k21lk ] denotes the conditions imposed on summation variables 6 
[223: 

ll, kl ,  12, k2->O, (48a) 

11 + 12 = / ,  (48b) 

It + 2kl  + 12 + 2k2 = I + 2k. (48c) 

By virtue of Eq. (48), the right-hand side of Eq. (46) is a triple sum over a finite 
number of terms. If k = 0, by virtue of Eq. (48), we obtain kl -- k2 = 0, I1 + 12 = l, 
i.e. the triple sum in Eq. (46) occurs to be simple. In this case, the formula (46) 
is reduced to the well known Moshinsky expansion [23]. 

6. Summation Diagrams 

The final factorization of the Eq. (35) is carried out in two steps. First, using 
the addition theorem (46), we express the product {~(rla)  | ~(rlb)} as a linear 
combination of the products {~(R)  | ~/(rlc)} with some coefficients S (see Eq. 
(54)), where rlc = rla or rl~ =rtb,  depending on the argument of ~b(q~ in the Eq. 
(35). Second, using Eq. (42) and applying the theorem Eq. (44) twice, we express 
the resulting quadruple IST product with pairwise coinciding arguments as a 
linear combination of double ITP. 

Consider the case c = a in Eq. (35). Writing ~ as ~ (rl~ - R ) ,  where R = Rb~, 
and using the addition theorem Eq. (46), we can express the ITP {~(rl~) | ~ ( r t  b)} 

6 Formula (6) in [22] is incorrect: its right-hand side should be multiplied by (--1)b(41r) a/2. 
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as a superposition of triple ITP in which two IST have the same argument, rla. 
Using the relationship (see the definition of 6]-symbol [17n, 18k, 19i]): 

= _ a c V ( d '  b; ,,}( 
(49) 

the triple ITP can be reassociated so that the IST of the same argument would 
be coupled. Using the permutation rule [17o, 181, 19j]: 

{/; | ';ALM = (--1)"~-%;~ | f&~,, (50) 

and since the sum of the momenta  in H(l l ,  12, I) is always even, and applying 
the addition theorem (44), we can express the triple ITP as a linear combination 
of double ITP. Thus, we obtain 

{ ~ ' ( r l a )  | ~;(r~b)}tm = , ~,, ,,Y{(ljkj, l;k;, l;'k 7) 
t i k j l j k j  

l !  ! 

x { ~ ; ( R ) ~  ~k';+k+(t~+;-x')/2Zr 31 A' ' ' ~ l a ) . C l m ,  (51) 

where [l;k;l;'k}'llikj] (see Eq. (48)), and summation over h '  is taken over all 
values consistent with the triangle conditions (conservation of momenta) that 
are implicitly contained in the Racah coefficients in Eq. (51). Thus, summation 
in Eq. (51) is not simple. The situation is complicated by one more factor. To 
obtain the coefficients in Eq. (51) in an explicit form, it is necessary to introduce 
a new variable 

p '=  k; +k,  +(l} + l i - h ' ) / 2  (52) 

and to change the summation order so that 17, kT, x', , /  become the outer 
summation variables. 

Intricate summations and change of summation order are the typical difficulties 
encountered when one applies the Racah algebra to molecular [22, 24] and 
nuclear [25] problems. We give here a simple and convenient procedure for 
these transformations. The conditions imposed on all the indices in Eq. (51) 
(both outer variables and summation variables) can be represented by the diagram 
in Fig. 2a. Each simple vertex contains some orbital moment,  while a double 
vertex contains an orbital moment  and an "energy"  variable (of the type k in 
Eq. (48). Simple triangle corresponds to the triangle condition imposed on 
momenta  by the Racah coefficients (as well as by the quantities Yg" and H) .  
Altogether,  there are four conditions for the conservation of momentum. Double 
triangle means that for variables at the double vertex, besides the "orbital" 
condition the "energy"  condition Eq. (48c) is also fulfilled (solid line means that 
the corresponding energy combinations of the type l + 2k are contained on the 
same side of the equation and have the same sign). Outer  vertices correspond 
to outer (fixed) indices, while inner ones-to inner (summation) variables. 
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1~ 

S "-4 
b 

Fig. 2. Summation diagram for coefficients S (54), (55) (for explanation see Sect. 6 and 7) 

Obviously, a double triangle corresponds to the total set of the conditions Eq. 
(48). 

Such a diagram can be symmetrized, if all simple vertices and triangles are 
transformed into double ones, by introducing additional "energy"  variables for 
simple vertices and imposing a condition of the type (48c) on each new triplet. 
Analytically, this procedure is unique for any simple triangle with two double 
vertices, say, for the triangle on the bot tom to the left in Fig. 2a. By induction, 
this, in turn, gives a unique procedure for the triangle on the right as well. As 
a result we obtain a symmetric diagram (Fig. 2b) in which six double sets of 
indices are related by the following four sets of similar conditions 

[ l~k,likj[Ik ], [ l ~k ~l T k '~ ]likj], [ l ~k ~l~ki[A '~'], [17 k ; A '~,'[lk ]. (53) 

It is easy to show that the "energy" equality corresponding to any of these four 
sets follows from the other three conditions. 

7. Final Decomposition of Reduced Density 

Due to the symmetry of the diagram (Fig. 2b), we can choose either the summa- 
tion route b or the route c, in place of the initial path a. Analytically, this means 
the sets in Eq. (53) can be permuted without violating the conditions contained 
in them. Therefore,  any set of primed indices in one of the three sets in Eq. 
(53) (except the first) can be taken as the outer summation variables. Choosing 
the summation route b (Fig. 2b), we obtain 

~likil ,k  i = ~x ' ( r la ) } tm  (54) 
all 

primes 

l _z&tk, .. ~ ,  Y{(likj, ' . (55) 
tikj li l ' 
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where  7 

p! tt t ! ! ! t! !t ! ! t t [l~k~,t ~ Ilk], [ I i k i I i k i  Iljkj], [ l ik i l ik i la  u ] (56) 

and 

[lik,l jkjllk ]. (57) 

In  calculat ing the coefficients S, no te  that  s u m m a t i o n  in Eq.  (55) is, in fact, 
s imple,  since by  vir tue of Eq.  (52), the  index k~ can be  expressed  th rough  outer ,  
with respec t  to k~, pa rame te r s .  Never the less ,  the express ions  in Eqs.  (55)-(57)  
are m o r e  conven ien t  in fur ther  considerat ion.  

For  c = b, in Eq.  (54), we should put  via = r lb  + R .  Because  of Eq.  (50) and due 
to the equal i ty  [17p, 18m] 

~tk,~ ( - R )  = ( - 1 ) ' ~ ( R )  (58) 

we can readily show that  fac tor iza t ion  of the le f t -hand  side of Eq. (54) over  
R ,  r~b is given by a similar  expression,  with the  except ion  tha t  

S lk!?'  "l - ~--l~l,+l~+v'+lr k~ ~I a).  (59) 

T h e  coefficients S(l ,  a ) ,  S( l ,  b)  are par t icular  cases of the general  coefficients 
S (l, 6), which rep resen t  a specially p a r a m e t r i z e d  fo rm of the Smirnov  coefficients 
[22] and depend  on cont inuous  p a r a m e t e r  6 ( - 1 - < 8  -< 1). Accura t e  to a phase  
factor,  8 = 1 for  S(l ,  a )  and 3 = - 1  for  S(l ,  b).  For  the par t icular  coefficient 
S( l ,  +1),  we obta in  a simplification not  inheren t  in the  genera l  case. 

Using Eq.  (54), the express ion  (35) for  the densi ty  can be  rewri t ten  in a one -cen t re  
form:  

i , i  ~"  ~ l i k i l k j  " v '  
P c ( q ) l ,  r n  : ,, 4,." Slik;X'v '{,l' c){{Y/q (R)  @ tO(q)(rlc)} 0 @ {~ (R) @ ~ 

l i k i A ' v '  

(6o) 

where  c = a, b. 

To  simplify this express ion  we should couple  one -cen t re  contr ibut ions.  Tak ing  
the scalar factors  e~,,n,(rlc)  outs ide  the sign of ITP,  express ing bo th  spherical  

f f ) t - - I  / 2  funct ions  in the first ITP  as -~, ~q.g;,, using the reassocia t ion rule Eq. (42), and 
since [17q, 18n, 19k] 

t l~ h . . . .  ll+X'+l+/q -1 12 l l (61) 
11 12 =[- -1 )  7r'l,l 1~ h ' lq ' 

7 The definition of k is contained in Eq. (57). Eq. (52) is contained in the third set of Eq. (56). 
The structure of summation over l~', k~', A', v' in Eq. (54) is described by the first set in Eq. (56). 
The range of summation over li, k~ (Ii, " ' v' ' " k i ,  h , being fixed) in Eq. (55) is described by the second 
and third sets in Eq. (56). The dependence of S in Eq. (55) on u' is implicitly defined by the third 
set in Eq. (56). 
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after applying the addition theorem Eq. (44) twice, we obtain 

{{Y,~ (R) | t~(q)(rlc)}O | {~ ( R )  "' | 0y., (rl~)}l}lm 

l' k '  f c g l k " i + ( l " i - l l ) / 2  , o , v ' + ( h ' - 1 2 ) / 2  i \ a  I x = Y~ ~l~t~tl-~' l;  " ( R ) |  (62) u~ 12 (rlc )~lmeaq, nq (rlc ), 
11,12 

l':,k' < nx. l l + x ' + l + l  - 1  . . . . . .  {12 ll [} 
Gl~l~aI=[-- l)  " 'rrtlarrt '~r't~�88 l~ X' lq"  , ( 6 3 ~ 

Substituting Eq. (62) into Eq. (60), introduce the following new summation 
variables: 

n~ = k}' +(/}' - l l ) / 2 ,  n2 = v' + (;t '-/2)/2. (64) 

To determine the new coefficients T, the indices 11, n~, 12, n2 should be given the 
meaning of outer summation variables. In terms of the summation diagrams, 
Eq. (62) is described by a six-vertex graph similar to that in Fig. 2b (the factors 
Yr . (R)  and ~t(q)(rlc) can  be represented by the same vertex with the indices lq, 
- l J 2 ) .  

Duplicating all the elements in the graph and combining it with the diagram in 
Fig. 2b and since both graphs have three common vertices, we obtain the diagram 
in Fig. 3 which describes the resulting summation. Allowing for the possibility 
of different routes, we obtain 

i,j T i , l ( q  ) [ l  n l  n2  Oc(q)l,m E "11-1a-2~', C){~ll (R) | (65) = qlt2 (rlc)}t.me~.n,(rlc), 
l l n l l 2 n 2  

Ti,i(q) y sl~k,~kj r:x' l~.ll~.~ (l, C) = , ~ t~k;~,.,(l, c)Gl~t~l~t, (66) 
l j k i X  v 

where 

[lln J2n2llk],  [llnllq - lJ21l'i'k"i], [12n2lq - lq/2lZ'u'], [ l /kTZ '#I lk] .  (67) 

In calculating the coefficients T, one should take into account that not all the 
summation variables in Eq. (67) are linearly independent. These dependences 
can be easily found from Eq. (48) for each condition set in Eq. (67) (or from 
the summation diagram Fig. 3). 

Fig. 3. Summation diagram for coefficients T 
(65), (66) (for explanation see Sect. 7) 
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8. Summary 

To present a general outline of the s method we shall give here 
the most important equations which constitute the technical background of the 
method. 

First, we introduce the reduced atomic density in accordance with Eq. (12) as 
follows 

rr(i,i)l,m (r l . ,  rlb) = {O(i)(rl~) | 0o)(rlb)}~.~. (68) 

The initial direct atomic product II has the following simple expression in terms 
of the reduced densities 

II(i.i) . . . .  , ( r l . ,  r lb ) = E (lirnilimjll, rni + mj)~(i,j)t, mi+m,(rla, rlb ), 
I 

(69) 

Second, in agreement with Eq. (23) we separate the quantity ~- onto the 
exponential part tr possessing the simple Z-symmetry and the polynomial part 

"n'(i,i)l,m(rla, rlb)= O'(id) (rla, rlb ){~ | ~i(rlb)It, m, (70) 

where 

O'(i,j) (rla, rJ.b ) = e ..... h_2k~(rla)e,~j,,~j_tj_2ki(rlb ) m e  ..... eo~,,~ 

and 

(71) 

O < - k i < - J ( n i - l i + l ) ,  O < - k i < - J ( n j - l j + l )  (72) 

The application of the least square method procedure for the additive separation 
of the or- part of the density ~" (E- factorization) with the polynomial part {~/| 0~} 
left untouched at this stage leads to the partial additive factorization of the 
density rr which in agreement with Eqs. (34), (35) takes the form 

b 

rr(i.i)l,m(rla, rlb)---- ~ ~, r~</d> id "~ c(q) ( R )p c(q)t,m (r la, r lb ), (73) 
c = a  (q)  

P~{q)~,m(rla, rlb) = {{Y~q (R) | ~O(q)(rlc)}o | {~,'(rla) | ~J(r~b)}t}~,~ (74) 

With the help of the translation transformation (54) for the polynomials ~ 
quantity p in Eq. (74) can be expressed in one-centre form as in Eq. (60) 

i,j l .k. l .kj  
P~(q)t,,.,, = ~ St~d'/,,,,,(l, c ){{Ylq(R)  | tP(q)(rlc)}O | {~}(R) | "' 

l j k j , k  v 

(75) 

which, however, is not expedient for calculations since one-centre contributions 
enter into this equation in an uncoupled form. The reassociation of the quadruple 
tensor product in Eq. (75) according to Eqs. (62), (63), (64) leads to a new type 
of transformation coefficients T Eq. (66) and permits a compact one-centre 
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representation of the density O 

l'l 2 Oc(q)t, = ~ ltl,lt2,2"ri'J~q~ (l, c){~l~ 1 ( R )  | ~12 (rlc)}zmeo,,,.n,~(rlc). (76) 
/ 1 , n 1 / 2 n 2  

All the necessary summations in Eqs. (75), (76) along with the conditions on 
the outer summation indices are represented by the diagrams in Figs. 2 and 3. 

9. Concluding Remarks 

Thus, using the E-factorization approach, we can reformulate the problem of 
additive factorization of electron density in the class of one-centre functions. 

The concept of reduced atomic density Eq. (68) permits us to formulate the 
problem in terms of tensor products, to avoid the piling of the Clebsh-Gordon 
coefficients in the intermediate calculations, and facilitates the use of the Racah 
algebra. Such a formulation is not a "superfluous" artificial step which could be 
avoided with the help of some other technique. In fact, the tensor nature of the 
initial objects gives rise to, in some way, a transformation of the type (69), which 
is often masked by the introduction of unconventional auxiliary coefficients and 
functions. 

Separation of the (r-part in Eq. (70) permits us to represent the two-center 
atomic density as the product of the exponential expression (r (71) which is 
analytically complicated yet possesses the simple Z- symmetry and the polynomial 
expression {~ | ~} which is, vice versa, analytically simple yet possesses an 
intricate symmetry. Since the latter expression can be factorized exactly with 
the help of the addition theorems, this permits us to deal with the densities of 
any complicate geometry (large orbital numbers I) while applying the approxi- 
mate E-factorization procedure only to the simplest exponential product or. 
Evidently, this hints at the possible application of the E-factorization method 
to compounds with complex ions. 

Various approximation schemes are possible as the representation of atomic 
density Eq. (70) in the form of a product of exponential and polynomial distribu- 
tions is not unique. In the particular cases ki = J ( r l i - l i ) ,  kj = . l ( n i - l j )  o r  k i  = 

J(n l  - li + 1), kj = J ( n  i - l i + 1) in Eq. (70), approximate factorization with the help 
of LSM is applied to the product of states possessing not only minimum orbital, 
numbers l~, lj, but also minimum principal quantum numbers vi + 1, uj + 1 (see 
the note to Eqs. (19), (20)). Bounded number of approximated functions guaran- 
tees more uniform error for different states and better control over approxima- 
tion. This is achieved through cumbersome translation formulas for non- 
harmonic polynomials in Eqs. (19) and (20) which leads to triple sum in Eq. 
(46). On the other hand, in the case of harmonic approximation Eq. (18), the 
corresponding sums are simple (see the note to Eq. (48)), consequently the 
formalism is simplified. 

The heavy use of the Racah algebra is unavoidable to present the approximate 
LSM-decomposition of the or-distribution, the exact translational factorization 
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of the polynomial part and the subsequent reduction of quadruple ITP in Eq. 
(74) in a uniform and compact manner. This results in a new type of the 
transformation coefficient T in Eq. (76), whose calculation is the central point 
of the method as regards to the technical details. It is important that the 
coefficients T are directly related to the standard kinematical constants of 
the angular momentum theory. The summation diagram technique simplifies the 
analysis and determination of these coefficients. 

Evidently, the use of the Mulliken approximation (or any other two-term 
approximation) to factorize the o--component of density, while preserving the 
exact form of the angular part leads to a much simpler expression for the 
coefficients T. Since the E-factorization approach takes account of the exact 
behaviour of density due to the two-center product of spherical functions, the 
error in the minimal Z- factorization method is due, exclusively, to the approxima- 
tion of the s-function product and, therefore, is uniform for the basis functions 
with arbitrary orbital quantum numbers. Hencewith, it should not exceed the 
error in the Mulliken approximation for the s-functions. It is well known, the 
Mulliken approximation gives much better results for the s-functions than for 
any other functions [5, 11, 14, 26]. This indirectly suggests that even the minimal 
Z-approximation might prove useful in describing the electron structure of 
compounds with heavy atoms. 

Acknowledgment. The authors express their gratitude to N. M. Klimenko, O. P. Charkin and 
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